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A h a d .  Ultradiffusion is defined on a family of fractal branching Koch CUNCS. By an 
exact renormalization decimation transformation the anomalous longtime behaviour of 
the autocorrelation function is obtained. Forthe particular hierarchy we find a non-universal 
crossover C, = (m - 1)/2M and a universal one C, = 112 as the effective temperature C is 
increased, where M is the maximum ramification number of the fractal. We also find that 
for large M, the dynamic behaviour of ultradiffusion on the fractal is independent of the 
effective temperature C. 

It is known that one of the parameters used to characterize the topological properties 
of the fractal is R, the order of ramification. At a point P, R measures the smallest 
number of significant interactions which one must cut in order to isolate an arbitrary 
bounded set of points connected to P (Mandelbrot 1977, 1982). The two extreme 
values of R obey the inequality, R,,, 2 2R,,.-2. The fractal Koch curves have finite 
R. When RmaX = R,,, = 2, the curve is homogeneous and it is called non-branching. 
When R,.,# R,,., the curve is inhomogeneous and it is called branching (Gefen et 
a1 1983). 

Since Huberman and Kerszberg (1985) presented the typically simplest one- 
dimensional ultradiffusion model to describe the anomalous relaxation in very different 
physical systems ranging from molecular diffusion (Austin et a1 1975) to spin glasses 
(Sompolinsky 1981), various aspects of hierarchical structures have been investigated, 
consisting of electronic properties (Ceccatto et al1987), vibrational spectrum (Keirstead 
et a1 1988), multifractal nature (Havlin and Matan 1988, Kahng and Redner 1989, Lin 

and Stella 1986a, Ceccatto and Riera 1986, Ceccatto and Hubennan 1988, Giacometti 
et a1 1988, Zheng et a1 1989a, 1991). 

Jtis worth mentioning that Maritan and Stella (1986a) studied the spectral properties 
on a fractal non-branching Koch curve with long-range interactions and found a 
transition from non-universal to universal anomalous spectral behaviour as the range 
of the forces is increased beyond a certain threshold. They also pointed out that the 
problems of ultradiffusion can be solved within similar mathematical frameworks and 
similar conclusions can be obtained. 
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It has been shown that different maximum ramification number Rmax of the fractal 
will result in some different properties, such as the trail problem (Zheng er a/ 1989b) 
on the fractal Koch curves. In this letter, ultradiffusion on a family of fractal branching 
Koch curves is considered and an interesting dependence of the ultradiffusion behaviour 
on the maximum ramification number of the fractal branching Koch curves is obtained. 
First of all, we show that the anomalous relaxation exponent of the autocorrelation 
function depends on the maximum ramification number of the fractal. Then, we find 
two crossovers as the effective temperature is increased in the case of the particular 
hierarchy. Furthermore, it is indicated that the anomalous relaxation behaviour of the 
autocorrelation function is independent of the effective temperature for the fractal 
branching Koch curves with large ramification number. 

For the sake of convenience and simplicity, in this letter. we first introduce our 
ultradiffusion model on a fractal branching Koch curve with the maximum ramification 
number Rmax = 3,  and the fractal dimension dr= In 61111 3 as pictured in figure 1. 

H 

K 

Fisvre 1. An ultradiffusion model defined on a branching Koch curve with maximum 
ramification number R, = 3 and fractal dimension d, = In 6/11? 3. l b e  continuous curve 
represents the backbone of the fractal. 

Consider a particle hopping from point to point on the curve with energy bamers 
distributed in a hierarchical way as indicated in the figure. The bamers are labelled 
by wi ( i  = 0, 1 , 2 , 3 , .  . .), the probability that they will be crossed in unit time. Let PA( t ) ,  
P B ( f ) ,  . .L, be the probability of finding the particle at point A, E,. . . , at time f and 
F.(A), PB(A), . . . , their corresponding Laplace transforms. Then the diffusion is 
described by an infinite set of master equations of the following type 

A ~ B = w o ( ~ , , - ~ B ) + w o ( ~ f i - ~ B ) + w o ( ~ , - ~ B ) + w 2 ( ~ G - ~ B ) .  (1) 

Performing an exact renormalization group decimation procedure which describes 
the points C, D, E, I,  F, J , .  . . , in terms of A, E, G, H and K, we obtain a new system 
of the same form as (1) with the recursion relations 

p=aF w:= w,+, /a  A’=  ,¶A (2) 

where 

n = ( w o + w , ) / ( 3 w o + 2 w , )  ( 3 )  

,¶ = ( 2 1 w o + 1 4 w , ) / ( w o + w , ) .  (4) 

and 
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In deriving the above relations we have used the condition wb= wo to fix the timescale 
and considered only the A + O  limit to obtain the leading dynamical scaling behaviour 
of the autocorrelation function P,,(t) (Maritan and Stella 1986b). 

The above model and method are easily generalized to the case of the Koch curve 
in the same family with the arbitrary maximum ramification number Rmax = M ( M  3 3 )  
and the fractal dimension d,= In 2 M / h  3.  The corresponidng recursion relations are 
found 

P = OM@ wj= wj , , /aM A’= pMA (5) 
where 

aM = [ ( M  - l )wo+2wl ] / (2Mwo+4w, )  

p M  = [ ( M 2 +  M + Z ) ( M W ~ + ~ W , ) ] / [ ( M  - I )  w0+2 w , ] .  

(6) 

(7) 
Taking into account (5)-(7) and paying attention to the inverse Laplace transform 

of Fo(A), the non-universal time scaling exponent x (Maritan and Stella 1986b) of the 
autocorrelation function is found to be 

and 

2 In [ (M’+M ~ ~ ) ( M w , + ~ w ~ J / ( ~ M w , , + ~ w : ) ]  
In((M*+ M t Z ) ( M w o + 2 w f ) / [ ( M  - 1 J w o + Z w f ] )  

X =  

where w: characterizes the line of fixed points to which the initial bamer hierarchy 
{ wn} is attracted. It is indicated that the anomalous long-time behaviour of the autocorre- 
lation function is dependent on the maximum ramification of the fractal Koch curve. 

Now we turn to the particular case of wj = C’ (0 < C < 1, j = 1 ,2 , .  . .), where C is 
an effective temperature parameter (Huberman and Kerszbery 1985, Maritan and Stella 
1986b). One can find 

C < ( M  - 1)/2M 
2 In[ ( M 2  + M + 2)/2] 

In[M( M 2 +  M + 2 ) / (  M - l)]  

( M  - 1) /2M < C < f (9) 
2 In[( M 2 +  M +2)/2] I l q [ ( M 2 + M + 2 ) / 2 C ]  

X =  

2 In[( M 2 +  M +2)/2] I’ In( M Z +  M + 2 )  
Equation (9) shows that as the effective temperature parameter C is increased, two 
crossovers emerge: one is non-universal C ,  = ( M  - 1)/2M (it depends on M )  for the 
transition from universal to non-universal anomalous diffusion, the other is universal 
C, = f for the transition from non-universal to universal anomalous diffusion. Another 
interesting consequence which can he verified from equation (9) is that, if M is large 
enough, x will he independent of C (e.g. when M = 50, x 

To summarize, we have introduced and investigated, by an exact renormalization 
group method, an ultradiffusion model defined on a family of fractal branching Koch 
curves. The non-universal time scaling exponent x of the autocorrelation function 
Pa(?) has been found. It is indicated that the anomalous long-time behaviour of the 
autocorrelation function depends on the maximum ramification number of the fractal 
Koch curve. For the particular hierarchy we found a non-universal crossover C ,  = 
( M - l ) / Z M  and a universal one C2=f as the effective temperature C is increased, 
We also found that for large M, the dynamic behaviour of ultradiffusion on the fractal 
branching Koch curves is independent of the effective temperature. 

0.82 for all C ) .  
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